Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[bis[μ_2 -5-(pyrimidin-2-yl)tetrazolatolzinc(II)]

Xiu-Ling Zhang,* Cun-Lan Zhang, Yu-E Qiu and Ning An

Department of Chemistry, Dezhou University, Dezhou 253011, People's Republic of China

Correspondence e-mail: xlzhang99@126.com

Received 11 August 2007; accepted 21 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.005$ Å; R factor = 0.059; wR factor = 0.081; data-to-parameter ratio = 15.3.

The title compound, $[Zn(C_5H_3N_6)_2]_n$, has a neutral twodimensional square grid-like network structure, in which the central Zn^{II} atom is located on an inversion centre and coordinated by six N atoms from four 5-(pyrimidin-2-yl)tetrazolate ligands in a distorted octahedral geometry [Zn-N = 2.114 (3)–2.193 (3) Å and N–Zn–N = 77.78 (9)–102.22 (9)°]. The tetrazolate ligand adopts an N,N':N"-tridentate chelating-bridging coordination mode. This complex is isostructural with the iron(II), cobalt(II) and nickel(II) analogues.

Related literature

For ligand preparation, see: Demko & Sharpless (2001). For related literature, see: Rodríguez & Colacio (2006); Rodríguez et al. (2005, 2007); Liu & Fan (2007).

Experimental

Crystal data

$[Zn(C_5H_3N_6)_2]$	V = 1410.5 (5) Å ³
$M_r = 359.64$	Z = 4
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 8.3490 (17) Å	$\mu = 1.76 \text{ mm}^{-1}$
b = 9.4760 (19) Å	T = 293 (2) K
c = 17.828 (4) Å	$0.20 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker SMART 1000 CCD area-	13281 measured reflections
detector diffractometer	1619 independent reflections
Absorption correction: multi-scan	1162 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1998)	$R_{\rm int} = 0.085$
$T_{\min} = 0.720, \ T_{\max} = 0.742$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	106 parameters
$vR(F^2) = 0.081$	H-atom parameters constrained
S = 1.19	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
.619 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn1–N1	2.114 (3)	Zn1-N5	2.169 (3)
N1 ⁱ -Zn1-N5	102.22 (9)	N5-Zn1-N3 ⁱⁱ	88.44 (10)
N1-Zn1-N5	77.78 (9)	$N1-Zn1-N3^{m}$	91.63 (11)
N1-Zn1-N3 ⁱⁱ	88.37 (11)	N5-Zn1-N3 ⁱⁱⁱ	91.56 (10)
C			- 1. (:::)

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1;$ (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, z.$

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank Dezhou University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2105).

References

- Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945-7950.

Liu, J.-T. & Fan, S.-D. (2007). Acta Cryst. E63, m1632.

- Rodríguez, A., Kivekäsb, R. & Colacio, E. (2005). Chem. Commun. pp. 5228-5230
- Rodríguez, A., Salinas-Castillo, A., Galli, A. S., Masciocchi, N., Gutíerrez-Zorrilla, J. M., Vitoriad, P. & Colacio, E. (2007). Dalton Trans. pp. 1821-1828

Rodríguez, A. & Colacio, E. (2006). Chem. Commun. pp. 4140-4142.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m2423 [doi:10.1107/S1600536807041414]

Poly[bis[#2-5-(pyrimidin-2-yl)tetrazolato]zinc(II)]

X.-L. Zhang, C.-L. Zhang, Y.-E. Qiu and N. An

Comment

Recently, several complexes of 5-(pyrimidin-2-yl)tetrazolato ligand have been reported containing iron(II), cobalt(II), nickel(II), zinc(II) and cadmium(II) metal ion [Rodríguez & Colacio (2006); Rodríguez *et al.*, 2005, 2007; Liu & Fan, 2007]. The title compound poly[5-(pyrimidin-2-yl)tetrazolato]zinc(II)] (I, Fig. 1 and 2) is isostructural with the iron(II), cobalt(II) and nickel(II) analogs. The structure features a two-dimensional square-grid-like network with the grid side length of 6.315 (3) Å, in which Zn^{II} atom is located on an inversion centre and exhibits a distorted octahedral coordination geometry around by six N atoms. Each Zn^{II} atom coordinates to four ligands and each ligand bonds to two Zn^{II} atoms through one of the pyrimidyl N atoms and the 1-positon tetrazole N for one, and one 3-position tetrazole N atom for the other. Selected bond distances and angles are listed in Table 1. In addition, in crystal structure such two-dimensional layers stack in an ABAB sequence.

Experimental

The ligand, 2-(1*H*-tetrazol-5-yl)pyrimidine was synthesized by the literature method (Demko & Sharpless, 2001). A mixture of ZnCl₂ (27 mg, 0.2 mmol) and the ligand (60 mg, 0.4 mmol) in *N*,*N*-dimethylformamide/ethanol ($\nu/\nu = 3:1, 8$ ml) in presence of a drop of triethylamine was placed in a Teflon-lined stainless-steel Parr bomb that was heated at 413 K for 36 h. Colorless crystals were collected after the bomb allowed to cool to room temperature during a period of 24 h. Yield, 30%.

Refinement

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. Displacement ellipsoid plot (30% probability) of a fragment of the layer structure of (I) showing the coordination environment of the metal and ligands. [symmetry codes: (A) 2 - x, 1 - y, 1 - z; (B) 1/2 + x, 1/2 - y, 1 - z; (C) 3/2 - x, 1/2 + y, z.]

Fig. 2. Two-dimensional layer of (I). For clarity, all H atoms have been omitted.

Poly[bis[µ2-5-(pyrimidin-2-yl)tetrazolato]zinc(II)]

Crystal data

$[Zn(C_5H_3N_6)_2]$	$F_{000} = 720$
$M_r = 359.64$	$D_{\rm x} = 1.694 {\rm Mg m}^{-3}$
Orthorhombic, Pbca	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 10696 reflections
a = 8.3490 (17) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 9.4760 (19) Å	$\mu = 1.76 \text{ mm}^{-1}$
c = 17.828 (4) Å	T = 293 (2) K
$V = 1410.5 (5) \text{ Å}^3$	Block, colourless
Z = 4	$0.20 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	1619 independent reflections
Radiation source: fine-focus sealed tube	1162 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.085$
T = 293(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 3.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -10 \rightarrow 10$
$T_{\min} = 0.720, \ T_{\max} = 0.742$	$k = -12 \rightarrow 12$
13281 measured reflections	$l = -22 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H-atom parameters constrained
$wR(F^2) = 0.081$	$w = 1/[\sigma^2(F_o^2) + (0.0173P)^2 + 1.2986P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.19	$(\Delta/\sigma)_{\rm max} < 0.001$
1619 reflections	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
106 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	—

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	1.0000	0.5000	0.5000	0.02321 (15)
N1	0.8536 (3)	0.3208 (3)	0.48306 (14)	0.0251 (6)
N2	0.7488 (3)	0.2405 (3)	0.51939 (13)	0.0293 (6)
N3	0.6979 (3)	0.1430 (3)	0.47237 (15)	0.0277 (7)
N4	0.7676 (3)	0.1574 (3)	0.40459 (15)	0.0286 (7)
N5	1.0407 (3)	0.4532 (3)	0.38246 (14)	0.0229 (6)
N6	0.9801 (4)	0.2806 (3)	0.28978 (16)	0.0442 (8)
C1	0.8634 (4)	0.2684 (3)	0.41356 (17)	0.0241 (7)
C2	0.9676 (4)	0.3365 (3)	0.35780 (18)	0.0264 (8)
C3	1.0735 (5)	0.3528 (4)	0.2425 (2)	0.0491 (11)
H3A	1.0860	0.3182	0.1940	0.059*
C4	1.1517 (5)	0.4744 (4)	0.2612 (2)	0.0435 (10)
H4A	1.2141	0.5230	0.2265	0.052*
C5	1.1340 (4)	0.5217 (4)	0.3333 (2)	0.0355 (9)
H5A	1.1878	0.6028	0.3484	0.043*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0251 (2)	0.0189 (2)	0.0256 (3)	-0.0015 (3)	-0.0001 (3)	-0.0023 (3)
N1	0.0259 (14)	0.0229 (14)	0.0264 (16)	-0.0039 (13)	0.0022 (12)	-0.0011 (12)
N2	0.0332 (14)	0.0247 (14)	0.0299 (15)	-0.0076 (13)	0.0055 (16)	-0.0035 (15)
N3	0.0261 (15)	0.0267 (15)	0.0303 (15)	-0.0067 (13)	0.0073 (13)	-0.0046 (13)
N4	0.0312 (16)	0.0278 (15)	0.0269 (15)	-0.0085 (13)	0.0058 (13)	-0.0063 (13)
N5	0.0237 (16)	0.0194 (13)	0.0256 (14)	-0.0004 (10)	0.0035 (12)	0.0043 (11)
N6	0.054 (2)	0.0475 (19)	0.0310 (17)	-0.0108 (18)	0.0148 (16)	-0.0130 (15)
C1	0.0259 (17)	0.0225 (17)	0.0239 (17)	-0.0016 (15)	0.0015 (15)	-0.0036 (15)
C2	0.026 (2)	0.0256 (18)	0.0276 (18)	-0.0002 (15)	0.0024 (14)	-0.0004 (14)
C3	0.064 (3)	0.056 (3)	0.027 (2)	-0.003 (2)	0.017 (2)	-0.010 (2)
C4	0.054 (3)	0.040 (2)	0.037 (2)	0.000 (2)	0.0209 (19)	0.0069 (18)
C5	0.038 (2)	0.026 (2)	0.043 (2)	-0.0001 (17)	0.0066 (17)	0.0049 (17)

Geometric parameters (Å, °)

Zn1—N1 ⁱ	2.114 (3)	N4—C1	1.331 (4)
Zn1—N1	2.114 (3)	N5—C2	1.338 (4)
Zn1—N5	2.169 (3)	N5—C5	1.340 (4)

supplementary materials

Zn1—N5 ⁱ	2.169 (3)	N6—C2	1.327 (4)
Zn1—N3 ⁱⁱ	2.193 (3)	N6—C3	1.337 (5)
Zn1—N3 ⁱⁱⁱ	2.193 (3)	C1—C2	1.470 (4)
N1—N2	1.329 (3)	C3—C4	1.366 (5)
N1—C1	1.337 (4)	С3—НЗА	0.9300
N2—N3	1.318 (4)	C4—C5	1.370 (5)
N3—N4	1.348 (3)	С4—Н4А	0.9300
N3—Zn1 ^{iv}	2.193 (3)	С5—Н5А	0.9300
N1 ⁱ —Zn1—N1	180.0	N4—N3—Zn1 ^{iv}	126.1 (2)
N1 ⁱ —Zn1—N5	102.22 (9)	C1—N4—N3	103.4 (2)
N1—Zn1—N5	77.78 (9)	C2—N5—C5	116.8 (3)
$N1^{i}$ —Zn1— $N5^{i}$	77.78 (9)	C2—N5—Zn1	114.5 (2)
N1—Zn1—N5 ⁱ	102.22 (9)	C5—N5—Zn1	128.6 (2)
N5—Zn1—N5 ⁱ	180.00 (3)	C2—N6—C3	114.7 (3)
N1 ⁱ —Zn1—N3 ⁱⁱ	91.63 (11)	N4—C1—N1	111.6 (3)
N1—Zn1—N3 ⁱⁱ	88.37 (11)	N4—C1—C2	128.4 (3)
N5—Zn1—N3 ⁱⁱ	88.44 (10)	N1—C1—C2	120.0 (3)
N5 ⁱ —Zn1—N3 ⁱⁱ	91.56 (10)	N6—C2—N5	126.5 (3)
N1 ⁱ —Zn1—N3 ⁱⁱⁱ	88.37 (11)	N6—C2—C1	119.3 (3)
N1—Zn1—N3 ⁱⁱⁱ	91.63 (11)	N5—C2—C1	114.2 (3)
N5—Zn1—N3 ⁱⁱⁱ	91.56 (10)	N6—C3—C4	123.8 (4)
N5 ⁱ —Zn1—N3 ⁱⁱⁱ	88.44 (10)	N6—C3—H3A	118.1
N3 ⁱⁱ —Zn1—N3 ⁱⁱⁱ	180.00 (14)	С4—С3—Н3А	118.1
N2—N1—C1	106.2 (3)	C3—C4—C5	117.0 (3)
N2—N1—Zn1	140.5 (2)	C3—C4—H4A	121.5
C1—N1—Zn1	113.3 (2)	С5—С4—Н4А	121.5
N3—N2—N1	107.7 (2)	N5—C5—C4	121.2 (3)
N2—N3—N4	111.1 (2)	N5—C5—H5A	119.4
$N2-N3-Zn1^{IV}$	122.2 (2)	C4—C5—H5A	119.4
N5—Zn1—N1—N2	-176.3 (4)	N3—N4—C1—N1	-0.2 (4)
$N5^{i}$ —Zn1—N1—N2	3.7 (4)	N3—N4—C1—C2	-178.3 (3)
$N3^{ii}$ —Zn1—N1—N2	95.0 (3)	N2—N1—C1—N4	0.2 (4)
$N3^{iii}$ —Zn1—N1—N2	-85.0 (3)	Zn1—N1—C1—N4	-178.9 (2)
N5—Zn1—N1—C1	2.3 (2)	N2—N1—C1—C2	178.4 (3)
N5 ⁱ —Zn1—N1—C1	-177.7 (2)	Zn1—N1—C1—C2	-0.6 (4)
$N3^{ii}$ —Zn1—N1—C1	-86.5 (2)	C3—N6—C2—N5	-1.4 (5)
$N3^{iii}$ —Zn1—N1—C1	93.5 (2)	C3—N6—C2—C1	177.9 (3)
C1—N1—N2—N3	0.0 (3)	C5—N5—C2—N6	1.0 (5)
Zn1—N1—N2—N3	178.6 (3)	Zn1—N5—C2—N6	-176.1 (3)
N1—N2—N3—N4	-0.2 (4)	C5—N5—C2—C1	-178.3 (3)
N1—N2—N3—N4 N1—N2—N3—Zn1 ^{iv}	-0.2 (4) -171.9 (2)	C5—N5—C2—C1 Zn1—N5—C2—C1	-178.3 (3) 4.6 (3)
N1—N2—N3—N4 N1—N2—N3—Zn1 ^{iv} N2—N3—N4—C1	-0.2 (4) -171.9 (2) 0.2 (4)	C5—N5—C2—C1 Zn1—N5—C2—C1 N4—C1—C2—N6	-178.3 (3) 4.6 (3) -4.2 (5)

N1 ⁱ —Zn1—N5—C2	176.1 (2)	N4—C1—C2—N5	175.2 (3)
N1—Zn1—N5—C2	-3.9 (2)	N1-C1-C2-N5	-2.8 (4)
N3 ⁱⁱ —Zn1—N5—C2	84.8 (2)	C2—N6—C3—C4	0.2 (6)
N3 ⁱⁱⁱ —Zn1—N5—C2	-95.2 (2)	N6-C3-C4-C5	1.3 (6)
N1 ⁱ —Zn1—N5—C5	-0.5 (3)	C2—N5—C5—C4	0.7 (5)
N1—Zn1—N5—C5	179.5 (3)	Zn1—N5—C5—C4	177.2 (3)
N3 ⁱⁱ —Zn1—N5—C5	-91.8 (3)	C3—C4—C5—N5	-1.7 (6)
N3 ⁱⁱⁱ —Zn1—N5—C5	88.2 (3)		

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1/2, -y+1/2, -z+1; (iii) -x+3/2, y+1/2, z; (iv) x-1/2, -y+1/2, -z+1.

Fig. 1

Fig. 2